Thursday, March 05, 2015

QNP 2015, Day Three

Today began with a talk by Mikhail Voloshin on QCD sum rules and heavy-quark states. The idea of exploiting quark-hadron duality to link perturbatively calculable current-current correlators to hadronic obervables and extract mesonic decay constants or quark masses is quite old, but has received a boost in recent years with the advent of three- and four-loop perturbative calculations in particularly from Chetyrkin and collaborators, which have also been used in conjunction with lattice results, e.g. by the HPQCD collaboration.

A review of hadron spectroscopy at B factories (including LHCb) by Roberto Mussa followed. The charmonium and bottomonium spectra are now measured to great detail, with recent additions being 1D and 3P states, and more states are also being discovered in the heavy-light (where the Bc(2S) has recently been discovered at ATLAS) and heavy-quark baryon (where the most recent discovery was the Ξb) sectors, and many more transitions being discovered and studied.

The next speaker was Raphaël Dupré, who spoke about colour propagation and neutralisation in strongly interacting systems. The idea here appears to be that in hadronisation processes, quarks first loose energy by radiating gluons and thus turn into colourless pre-hadrons, which then bind into hadrons on a longer timescale, and there seems to be experimental evidence supporting this energy-loss model.

After the coffee break, Javier Castillo reviewed quarkonium suppression and regeneration in heavy-ion collisions. Quarkonia are generally considered important probes of the quark-gluon plasma, because the production of heavy quark-antiquark pairs is a perturbative process that happens at high energies early in the collision, while their binding is non-perturbative and is expected to be suppressed by Debye screening in the coloured plasma. As a consequence, more tightly bound quarkonia, like the Y(1S), can exist at higher temperatures, while the more lightly bound charmonia or Y(3S) states will "melt" at lower temperatures. However, quarkonia can also be regenerated by thermalised heavy quarks rejoining into quarkonia at the phase boundary. Experimental data support the screening picture, with the J/ψ being more suppressed at the LHC than at STAR (because of the higher temperature), the Y(2S) more suppressed than the Y(1S), and transport models with a negligible regeneration component describing the data well. The regeneration component increases at low pT, and the elliptic flow of the charm quarks is inherited by the regenerated J/ψ mesons. Some more difficult to understand effects of the nuclear environment, called Cold Nuclear Matter (CNM) effects are beginning to be seen in the data.

Next was Zoltan Fodor with a talk about Lattice QCD results at zero and finite temperature from the BMW collaboration. By simulating QCD+QED with 1+1+1+1 flavours of dynamical quarks, BMW have been able to determine the isospin splitting of the nucleon and other baryonic systems. This work, which appears set to become a cover story in "Science", had to overcome a number of serious obstacles, in particular long-range autocorrelations (which could cured by a Fourier-accelerated HMC variant) and power-law finite-volume effects (which had to be fitted to results obtained at a range of volumes) introduced by the massless photon. In the finite-temperature regime, the crossover temperature is now generally agreed to be around 150-160 MeV, but the position and even existence of the critical endpoint is still contentious (and any existing results are not yet continuum-extrapolated in any case).

After the lunch break, Yiota Foka gave an overview of heavy-ion results from RHIC and the LHC. The elliptic flow is still found to be in agreement with perfect hydrodynamics, but people are now also studying higher harmonics, as well as the interplay between jets and flow, which provide important constraints on the physics of the quark-gluon plasma. At the LHC, it has been found that it is the mass, and not the valence quark content, that drives the flow behaviour of hadrons, as the φ meson has the same flow behaviour as the proton.

The next speaker was Carl Gagliardi, who reviewed results in nucleon structure from high-energy polarised proton-proton collisions. Proton-proton scattering is complementary to DIS in that it gives access to the gluonic degrees of freedom which are invisible to electrons, and RHIC has a programme of polarised proton collisions to explore the spin structure of the nucleon. Without the RHIC data, the gluon polarisation ΔG is almost unconstrained, but with the RHIC data, it is seen to be clearly positive and contribute about 0.2 to the proton spin. Using W production, it is possible to separate polarised quark and antiquark distributions, and there is more to come in the near future.

The last plenary speaker of the day was Craig Roberts, who reviewed the pion and nucleon structure from the point of view of the Dyson-Schwinger equations approach. In this approach, the pion is closely linked to the quark mass function, which comes out of a quark gap equation and describes how the running quark mass at high energies turns into a much larger constituent quark mass at low energies. Landau-gauge gluons also become massive at low energies, and confinement is explained as the splitting of poles into pairs of conjugate complex poles giving an exponentially damped behaviour of the position space propagator. While this approach seems to be able to readily explain every single known experimental result, I do not understand how the systematic errors from the truncation of the infinite tower of DSEs are supposed to be controlled or quantified.

After the coffee break, there were parallel sessions. An interesting parallel talk was given by Johan Bijnens, who has determined the leading logarithms for the nucleon mass (and some other systems) to rather high orders (which also for effective theories can be done using only one-loop integrals from a consistency argument by Weinberg).