This morning, we started with a talk by Taku Izubuchi, who reviewed the lattice efforts relating to the hadronic contributions to the anomalous magnetic moment (g-2) of the muon. While the QED and electroweak contributions to (g-2) are known to great precision, most of the theoretical uncertainty presently comes from the hadronic (i.e. QCD) contributions, of which there are two that are relevant at the present level of precision: the contribution from the hadronic vacuum polarization, which can be inserted into the leading-order QED correction, and the contribution from hadronic light-by-light scattering, which can be inserted between the incoming external photon and the muon line. There are a number of established methods for computing the hadronic vacuum polarization, both phenomenologically using a dispersion relation and the experimental R-ratio, and in lattice field theory by computing the correlator of two vector currents (which can, and needs to, be refined in various way in order to achieve competitive levels of precision). No such well-established methods exist yet for the light-by-light scattering, which is so far mostly described using models. There are however, now efforts from a number of different sides to tackle this contribution; Taku mainly presented the appproach by the RBC/UKQCD collaboration, which uses stochastic sampling of the internal photon propagators to explicitly compute the diagrams contributing to (g-2). Another approach would be to calculate the four-point amplitude explicitly (which has recently been done for the first time by the Mainz group) and to decompose this into form factors, which can then be integrated to yield the light-by-light scattering contribution to (g-2).

The second talk of the day was given by Petros Dimopoulos, who reviewed lattice determinations of D and B leptonic decays and mixing. For the charm quark, cut-off effects appear to be reasonably well-controlled with present-day lattice spacings and actions, and the most precise lattice results for the D and D

_{s} decay constants claim sub-percent accuracy. For the b quark, effective field theories or extrapolation methods have to be used, which introduces a source of hard-to-assess theoretical uncertainty, but the results obtained from the different approaches generally agree very well amongst themselves. Interestingly, there does not seem to be any noticeable dependence on the number of dynamical flavours in the heavy-quark flavour observables, as N

_{f}=2 and N

_{f}=2+1+1 results agree very well to within the quoted precisions.

In the afternoon, the CKMfitter collaboration split off to hold their own meeting, and the lattice participants met for a few one-on-one or small-group discussions of some topics of interest.